Finite Element Modeling of the Vibrational Behavior of Single-Walled Silicon Carbide Nanotube/Polymer Nanocomposites

Authors

  • A Nikkar Department of Mechanical Engineering, University of Guilan, Guilan, Iran
  • R Ansari Department of Mechanical Engineering, University of Guilan, Guilan, Iran
  • S Rouhi Young Researchers and Elite Club, Langarud Branch, Islamic Azad University, Langarud, Guilan, Iran
Abstract:

The multi-scale finite element method is used to study the vibrational characteristics of polymer matrix reinforced by single-walled silicon carbide nanotubes. For this purpose, the nanoscale finite element method is employed to simulate the nanotubes at the nanoscale. While, the polymer is considered as a continuum at the larger scale. The polymer nanotube interphase is simulated by spring elements. The natural frequencies of nanocomposites with different nanotube volume percentages are computed. Besides, the influences of nanotube geometrical parameters on the vibrational characteristics of the nanocomposites are evaluated. It is shown that reinforcing polymer matrix by single-walled silicon carbide nanotubes leads to increasing the natural frequency compared to neat resin. Increasing the length of the nanotubes at the same diameter results in increasing the difference between the frequencies of nanocomposite and pure polymer. Besides, it is observed that clamped-free nanocomposites experience a larger increase in the presence of the nanotubes than clamped-clamped nanotube reinforced polymers.                          

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

The effect of small scale on the vibrational behavior of single-walled carbon nanotubes with a moving nanoparticle

In this paper, free and forced vibration of simply-supported Single-walled carbon nanotube is investigated under the moving nanoparticle by considering nonlocal cylindrical shell model. To validate the theoretical results, modal analysis of nanotube is conducted using ANSYS commercial software. Excellent agreement is exhibited between the results of two different methods. Furthermore, the dynam...

full text

Young s Modulus of Single and Double Walled Carbon Nanocones Using Finite Element Method(TECHNICAL NOTE)

In this paper a three-dimensional finite element (FE) model of carbon nanocones (CNCs) is proposed and used for obtaining Young\'s modulus of CNCs. In this model, stretching and bending forces between carbon atoms are simulated using truss elements in ANSYS software. Then the model is subjected to the tension and by obtaining the stiffness of the CNC and using elasticity theory, Young’s modulus...

full text

Superhydrophobic carbon nanotube/silicon carbide nanowire nanocomposites

a r t i c l e i n f o The composite film of carbon nanotubes and silicon carbide nanowires was synthesized directly on the silicon substrate by the catalyst-assisted method. The carbon nanotubes crimped together decorated with silicon carbide nanowires covering the whole substrate. The appropriate amount of aluminum powders is a crucial factor to achieve the composite film. The composite film e...

full text

Viscoelastic behavior of Silica nanoparticle/polyimide nanocomposites using finite element approach

A three-dimensional micromechanical finite element model is developed to study the viscoelastic behavior of the silica nanoparticle/polyimide nanocomposites. The representative volume element (RVE) of the model consists of three phases including silica nanoparticle, polyimide matrix and interphase which surrounds the nanoparticle. The interphase region is created due to the interaction between ...

full text

Viscoelastic behavior of Silica nanoparticle/polyimide nanocomposites using finite element approach

A three-dimensional micromechanical finite element model is developed to study the viscoelastic behavior of the silica nanoparticle/polyimide nanocomposites. The representative volume element (RVE) of the model consists of three phases including silica nanoparticle, polyimide matrix and interphase which surrounds the nanoparticle. The interphase region is created due to the interaction between ...

full text

Finite element modeling of the human head under baton impact

Purpose: This research will try to predict damage probability and calculate the main stress resulted from baton impacts by finite element (FE) modeling of the human head considering skull texture, brain and cerebrospinal fluid.Materials and Methods: A three dimensional FE model of the skull-brain complex was constructed for simulating the baton impact. The FE analysis was carried out using ANSY...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 10  issue 4

pages  929- 939

publication date 2018-12-30

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023